Language

CSMLab follows an interdisciplinary approach:

 The research activities of the laboratory include the development and study of reinforced composite materials on a multiple scale. The properties which mainly studied in our laboratory include electrical, mechanical and thermoelectric. The study of such properties is accomplished by using various devices and instruments of the laboratory. Information about the equipment can be found here.

Τhe materials that used in our research laboratory are epoxy resins, which are the matrix phase of composite materials. As regards the reinforced materials, these consist of:
• Fibers, Unidirectional and Fabrics of glass, carbon and aramid fibers.
• Nano-tubes and carbon nano-fibers, carbon black, graphene.
The various forms of reinforcements are aimed to the creation of new hybrid materials with enhanced properties for a variety of applications such as shipbuilding, aerospace, electronics, automotive etc.

News

Multifunctional Composite Materials

Guest Editor: Prof. Dr. Alkiviadis S. Paipetis

https://www.mdpi.com/journal/applsci/special_issues/multifunctional_composite_materials

 

Special Issue Information

Dear Colleagues,
Composite materials have been studied for several decades already. Particularly in the last decade, the use of structural composites materials has literally been booming in the aeronautics and automotive industry. This is marking a notable change in design mentality, i.e., the tailoring or “architecturing” of material in accordance with structural needs, a possibility uniquely offered by advanced composites. It is this mentality that gave birth to the next generation of composites, that of multifunctional composite materials. These materials made “by design” possess the required improved specific properties but are also equipped with additional properties which impart to them other functionalities, which may be structural or nonstructural.
To this aim, the hybridization of otherwise “traditional” composites has been widely studied. A typical case study is that of embedding nano-scaled reinforcement into the matrix of usually micro-scale reinforced systems, with a view to both enhancing the matrix dominated properties as well as imparting multifunctionality. In the literature, the additional functionalities provide diverse nonstructural capabilities, such as inherent structural health monitoring, sensing and actuation, power harvesting, and power storage, in addition to structural ones such as wear resistance, morphing or self-healing. The parallel structural and nonstructural capabilities of the new generation composites aim to enhance product life and increase product utility with minimum structural aggravation.
Functionalities imparted to the materials may be passive, active or even adaptive. For example, a material is subjected to a certain field during its service life. Thus, the material has to first sense the field effect, and, if it possesses some degree of “awareness”, evaluate it and even respond so as to adapt in order to retain its performance requirements. To perform these functionalities, there are power and coupling requirements. Additional to these requirements, the reliability and durability of such systems is also a major issue, as the functional properties need to extend throughout the service life of the material. Finally, one the major challenges related to multifunctionality is the provision of engineering to integrate these functionalities in the composite structure at a system level, whereby the architectured composite system will be enabled to perform the full cycle, i.e., sense–evaluate–react, in response to the external stimuli, be they mechanical, environmental or other.
This is an outline of the issues that form the scope of this Special Issue. Research papers are invited in relation to multifunctional advanced composite materials, smart materials, sensing and self-diagnosis, actuation and morphing, inherent energy harvesting and storage capabilities, environmental property enhancement, electromagnetic shielding, and in any other field where the materials by design perform in diverse ways so as to respond successfully to their service conditions.

Prof. Dr. Alkiviadis S. Paipetis
Guest Editor

 

Keywords

  • self-sensing and self diagnosis
  • self-healing
  • actuation and morphing
  • electromagnetic shielding
  • power harvesting and storage
  • structural health monitoring

CSML as the coordinator of the H2020 “HARVEST” project organizes a dissemination session for the project at the 9th International Conference on Innovation in Aviation and Space (EASN) which will be held in Athens on 4th September 2019. More Information can be found under https://easnconference.eu/home.

Visit of Klaus Friedrich, Emeritus Professor and Research Consultant, Institute for Composite Materials (IVW GmbH)
Seminar entitled: “MARKETS AND TRENDS IN THE APPLICATION OF POLYMER COMPOSITES”,
Wednesday 12 June 2019 at 11:00 am, at the premises of our Department, room ΚΥ1

The 18th international conference on fracture and damage mechanics (FDM 2019) will take place in Rodos (Rhodes), Greece. The conference series has the support of the experts in the field of fracture and damage mechanics and has become established as a leading international forum for presentation latest research. The high quality researches presented at the previous meetings are archived in conference proceedings published in book form. In addition special issues in leading journals such as International Journal of Fracture, Engineering Fracture Mechanics and Key Engineering Materials have been devoted to the work presented at the meeting. The proceedings one the 18th international conference will be published in the Journal of Key Engineering Materials and distributed to the delegates at the conference..

Conference organisers:
Professor Alkis Paipetis
University of Ioannina
and
Professor Ferri M.H.Aliabadi,
Imperial College, London

For further information please visit:
http://fdm.engineeringconferences.net/new/

User Login

© 2015 Composite and Smart Materials Lab (CSMLab) - Materials Engineering Department, University of Ioannina | Developed by Antonis Tzounis

Search