Multifunctional Composite Materials
Guest Editor: Prof. Dr. Alkiviadis S. Paipetis
https://www.mdpi.com/journal/applsci/special_issues/multifunctional_composite_materials
Special Issue Information
Dear Colleagues,
Composite materials have been studied for several decades already. Particularly in the last decade, the use of structural composites materials has literally been booming in the aeronautics and automotive industry. This is marking a notable change in design mentality, i.e., the tailoring or “architecturing” of material in accordance with structural needs, a possibility uniquely offered by advanced composites. It is this mentality that gave birth to the next generation of composites, that of multifunctional composite materials. These materials made “by design” possess the required improved specific properties but are also equipped with additional properties which impart to them other functionalities, which may be structural or nonstructural.
To this aim, the hybridization of otherwise “traditional” composites has been widely studied. A typical case study is that of embedding nano-scaled reinforcement into the matrix of usually micro-scale reinforced systems, with a view to both enhancing the matrix dominated properties as well as imparting multifunctionality. In the literature, the additional functionalities provide diverse nonstructural capabilities, such as inherent structural health monitoring, sensing and actuation, power harvesting, and power storage, in addition to structural ones such as wear resistance, morphing or self-healing. The parallel structural and nonstructural capabilities of the new generation composites aim to enhance product life and increase product utility with minimum structural aggravation.
Functionalities imparted to the materials may be passive, active or even adaptive. For example, a material is subjected to a certain field during its service life. Thus, the material has to first sense the field effect, and, if it possesses some degree of “awareness”, evaluate it and even respond so as to adapt in order to retain its performance requirements. To perform these functionalities, there are power and coupling requirements. Additional to these requirements, the reliability and durability of such systems is also a major issue, as the functional properties need to extend throughout the service life of the material. Finally, one the major challenges related to multifunctionality is the provision of engineering to integrate these functionalities in the composite structure at a system level, whereby the architectured composite system will be enabled to perform the full cycle, i.e., sense–evaluate–react, in response to the external stimuli, be they mechanical, environmental or other.
This is an outline of the issues that form the scope of this Special Issue. Research papers are invited in relation to multifunctional advanced composite materials, smart materials, sensing and self-diagnosis, actuation and morphing, inherent energy harvesting and storage capabilities, environmental property enhancement, electromagnetic shielding, and in any other field where the materials by design perform in diverse ways so as to respond successfully to their service conditions.
Prof. Dr. Alkiviadis S. Paipetis
Guest Editor
Keywords
- self-sensing and self diagnosis
- self-healing
- actuation and morphing
- electromagnetic shielding
- power harvesting and storage
- structural health monitoring